Lecture 02
 Mathematical Foundations

Song Chaoyang
Assistant Professor
Department of Mechanical and Energy Engineering

songcy@sustc.edu.cn

A Future of Human-Robot Competition?

Mechanics \& Control

A Typical Knowledge Flow of Mechanical Manipulators

A Universe Coordinate System

The assumption that everything is referenced to ...

- A coordinate system attached to the World Frame
- All positions and orientations w. r. t.
- The Universe Coordinate System, or
- Other Cartesian CS that are (or could be) defined relative to the Universe CS.
- Robotic Mechanisms are systems of rigid bodies connected by joints.
- Pose is the collective term of the position and orientation of a rigid body in space.

Position \& Orientation

For $p \in \mathbb{R}^{n}, n=2$ for planar, $n=3$ for spatial

- Point: $p=\left[\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ p_{n}\end{array}\right],\|p\|=\sqrt{p_{1}^{2}+\cdots+p_{n}^{2}}$
- Vector: $v=p-q=\left[\begin{array}{c}p_{1}-q_{1} \\ p_{2}-q_{2} \\ \vdots \\ p_{n}-q_{n}\end{array}\right]=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$
- Matrix: $A \in \mathbb{R}^{n \times m}, A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 m} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n m}\end{array}\right]$

Description of Point-Mass Motion

Rigid-body Assumption

- $p(0)=\left[\begin{array}{l}x(0) \\ y(0) \\ z(0)\end{array}\right]:$ initial position
- $p(t)=\left[\begin{array}{l}x(t) \\ y(t) \\ z(t)\end{array}\right], t \in(-\epsilon, \epsilon)$

- Trajectory
- A curve $p:(-\epsilon, \epsilon) \mapsto \mathbb{R}^{3}, p(t)=\left[\begin{array}{l}x(t) \\ y(t) \\ z(t)\end{array}\right]$
- Rigid body transformation
- $\|p(t)-q(t)\|=\|p(0)-q(0)\|=$ constant

AncoraSIR.com

Homogeneous Transformation

Translation + Rotation $=$ Transformation

Exercise

Figure 2.8 shows a frame $\{B\}$, which is rotated relative to frame $\{A\}$ about \hat{Z} by 30 degrees, translated 10 units in \hat{X}_{A}, and translated 5 units in \hat{Y}_{A}. Find ${ }^{A} P$, where ${ }^{B} P=[3.07 .00 .0]^{T}$.

$$
\begin{aligned}
& { }_{B}^{A} T=\left[\begin{array}{llll}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Interpretations of Transformation

Three ways

- It is a description of a frame.
- ${ }_{B}^{A} T$ describes the frame $\{\mathrm{B}\}$ relative to the frame $\{\mathrm{A}\}$. Specifically, the columns of ${ }_{B}^{A} R$ are unit vectors defining the directions of the principal axes of $\{\mathrm{B}\}$, and ${ }^{A}{ }^{A}{ }_{B O R G}$ locates the position of the origin of $\{\mathrm{B}\}$.
- It is a transform mapping.
- ${ }_{B}^{A} T$ maps ${ }^{B} P \rightarrow{ }^{A} P$
- It is a transform operator.
- T operates on ${ }^{A} P_{1}$ to create ${ }^{A} P_{2}$

Common Operators

Translational / Rotational / Transformation

- Translational Operator

$$
{ }^{A} P_{2}=D_{Q}(q)^{A} P_{1}
$$

$$
\operatorname{Trans}(a, b, c)=\left(\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Rotational Operator

$$
{ }^{A} P_{2}=R_{K}(\theta){ }^{A} P_{1}
$$

$$
\begin{aligned}
\operatorname{Rot}_{x}\left(\theta_{x}\right) & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} & 0 \\
0 & \sin \theta_{x} & \cos \theta_{x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\operatorname{Rot}_{y}\left(\theta_{y}\right) & =\left(\begin{array}{cccc}
\cos \theta_{y} & 0 & \sin \theta_{y} & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\operatorname{Rot}_{z}\left(\theta_{z}\right) & =\left(\begin{array}{cccc}
\cos \theta_{z} & -\sin \theta_{z} & 0 & 0 \\
\sin \theta_{z} & \cos \theta_{z} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Transformation Operator

$$
{ }^{A} P_{2}=T^{A} P_{1} .
$$

Transformation Arithmetic

Compound / Inversion / Equation

Frame $\{\mathrm{C}\}$ is known relative to frame $\{B\}$, and frame $\{B\}$ is known relative to frame $\{\mathrm{A}\}$.

$$
{ }_{A}^{U} T{ }_{D}^{A} T={ }_{B}^{U} T{ }_{C}^{B} T{ }_{D}^{C} T
$$

AncoraSIR.com

Avoid direct inverse operation

- Computationally expensive in practice

A general and extremely useful way of computing the inverse of a homogeneous transform.

$$
{ }_{A}^{B} T={ }_{B}^{A} T^{-1}=\left[\begin{array}{ccc|c}
{ }_{B}^{A} R^{T} & -{ }_{B}^{A} R^{T A} P_{B O R G} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

Proper Orthonormal Matrix

Det $=+1 \quad$ Orthogonal + Normalized

- Cayley's Formula for orthonormal matrices Any proper orthonormal matrix

$$
R=\left(I_{3}-S\right)^{-1}\left(I_{3}+S\right)
$$

a skew-symmetric matrix

$$
S=\left[\begin{array}{ccc}
0 & -s_{x} & s_{y} \\
s_{x} & 0 & -s_{x} \\
-s_{y} & s_{x} & 0
\end{array}\right]
$$

- Any $3 x 3$ rotation matrix can be specified by just 3 parameters
- But rotations don't usually commute

$$
\begin{array}{ll}
R_{z}(30)=\left[\begin{array}{rrr}
0.866 & -0.500 & 0.000 \\
0.500 & 0.866 & 0.000 \\
0.000 & 0.000 & 1.000
\end{array}\right] & R_{z}(30) R_{x}(30)=\left[\begin{array}{rrr}
0.87 & -0.43 & 0.25 \\
0.50 & 0.75 & -0.43 \\
0.00 & 0.50 & 0.87
\end{array}\right] \\
R_{x}(30)=\left[\begin{array}{rrr}
1.000 & 0.000 & 0.000 \\
0.000 & 0.866 & -0.500 \\
0.000 & 0.500 & 0.866
\end{array}\right] & \neq R_{x}(30) R_{z}(30)=\left[\begin{array}{rrr}
0.87 & -0.50 & 0.00 \\
0.43 & 0.75 & -0.50 \\
0.25 & 0.43 & 0.87
\end{array}\right]
\end{array}
$$

- How to construct a simpler representation with the minimal (three) numbers?

X-Y-Z Fixed Angles

Roll-Pitch-Yaw Angles

${ }_{B}^{A} R_{X Y Z}(\gamma, \beta, \alpha)=R_{Z}(\alpha) R_{Y}(\beta) R_{X}(\gamma)$

$$
=\left[\begin{array}{ccc}
c \alpha & -s \alpha & 0 \\
s \alpha & c \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c \beta & 0 & s \beta \\
0 & 1 & 0 \\
-s \beta & 0 & c \beta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \gamma & -s \gamma \\
0 & s \gamma & c \gamma
\end{array}\right]
$$

$$
\begin{gathered}
{ }_{B}^{A} R_{X Y Z}(\gamma, \beta, \alpha)=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
\beta=\operatorname{Atan} 2\left(-r_{31}, \sqrt{\left.r_{11}^{2}+r_{21}^{2}\right)},\right. \\
\alpha=\operatorname{Atan} 2\left(r_{21} / c \beta, r_{11} / c \beta\right), \\
\gamma=\operatorname{Atan} 2\left(r_{32} / c \beta, r_{33} / c \beta\right),
\end{gathered}
$$

$\operatorname{Atan} 2(y, x)$ is a two-argument arc tangent function

- Using the positive square root, we can obtain single solution between $[-\pi, \pi]$
- If $\beta= \pm 90.0^{\circ}$, then we can choose the following cases.

$$
\beta=90.0^{\circ},
$$

$$
=\left[\begin{array}{ccc}
c \alpha c \beta & c \alpha s \beta s \gamma-s \alpha c \gamma & c \alpha s \beta c \gamma+s \alpha s \gamma \\
s \alpha c \beta & s \alpha s \beta s \gamma+c \alpha c \gamma & s \alpha s \beta c \gamma-c \alpha s \gamma \\
-s \beta & c \beta s \gamma & c \beta c \gamma
\end{array}\right]
$$

o
or

$$
\alpha=0.0
$$

$$
\gamma=\operatorname{Atan} 2\left(r_{12}, r_{22}\right) . \quad \gamma=-\operatorname{Atan} 2\left(r_{12}, r_{22}\right)
$$

Z-Y-X Euler Angles

W.R.T. the Moving System $\{B\}$ instead of the Fixed $\{A\}$

Three rotations taken about fixed axes yield the same final orientation as the same three rotations taken in opposite order about the axes of the moving frame.

$$
\begin{aligned}
{ }_{B}^{A} R_{Z^{\prime} Y^{\prime} X^{\prime}} & =R_{Z}(\alpha) R_{Y}(\beta) R_{X}(\gamma) \\
& =\left[\begin{array}{ccc}
c \alpha & -s \alpha & 0 \\
s \alpha & c \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c \beta & 0 & s \beta \\
0 & 1 & 0 \\
-s \beta & 0 & c \beta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c \gamma & -s \gamma \\
0 & s \gamma & c \gamma
\end{array}\right] \\
{ }_{B}^{A} R_{Z^{\prime} Y^{\prime} X^{\prime}}(\alpha, \beta, \gamma) & =\left[\begin{array}{ccc}
c \alpha c \beta & c \alpha s \beta s \gamma-s \alpha c \gamma & c \alpha s \beta c \gamma+s \alpha s \gamma \\
s \alpha c \beta & s \alpha s \beta s \gamma+c \alpha c \gamma & s \alpha s \beta c \gamma-c \alpha s \gamma \\
-s \beta & c \beta s \gamma & c \beta c \gamma
\end{array}\right]
\end{aligned}
$$

Equivalent Angle-Axis Representation

If the axis is a general direction (rather than one of the unit directions), any orientation may be obtained through proper axis and angle selection

$$
\begin{gathered}
{ }_{B}^{A} R_{K}(\theta)=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
\theta=A \cos \left(\frac{r_{11}+r_{22}+r_{33}-1}{2}\right) \\
\hat{K}=\frac{1}{2 \sin \theta}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
\end{gathered}
$$

- Simple form of representation
- θ falls between 0 and π
- Two solutions problem
- Becomes ill-defined for small angular rotations

Euler Parameters as a Unit Quaternion

Evolving from Equivalent Angle-Axis to A Four-Parameter System

- If equivalent axis $\hat{K}=\left[k_{x} k_{y} k_{z}\right]^{T}$ with equivalent angle θ

$$
\begin{aligned}
& \epsilon_{1}=k_{x} \sin \frac{\theta}{2} \\
& \epsilon_{2}=k_{y} \sin \frac{\theta}{2}, \quad \epsilon_{1}^{2}+\epsilon_{2}^{2}+\epsilon_{3}^{2}+\epsilon_{4}^{2}=1 \\
& \epsilon_{3}=k_{z} \sin \frac{\theta}{2} \\
& \epsilon_{4}=\cos \frac{\theta}{2}
\end{aligned}
$$

A Unit Quaternion as a 4 x 1 vector

$$
\begin{array}{cl}
\text { Rotation matrix written in Euler Parameters } & \epsilon_{1}=\frac{r_{32}-r_{23}}{4 \epsilon_{4}}, \\
R_{\epsilon}=\left[\begin{array}{ccc}
1-2 \epsilon_{2}^{2}-2 \epsilon_{3}^{2} & 2\left(\epsilon_{1} \epsilon_{2}-\epsilon_{3} \epsilon_{4}\right) & 2\left(\epsilon_{1} \epsilon_{3}+\epsilon_{2} \epsilon_{4}\right) \\
2\left(\epsilon_{1} \epsilon_{2}+\epsilon_{3} \epsilon_{4}\right) & 1-2 \epsilon_{1}^{2}-2 \epsilon_{3}^{2} & 2\left(\epsilon_{2} \epsilon_{3}-\epsilon_{1} \epsilon_{4}\right) \\
2\left(\epsilon_{1} \epsilon_{3}-\epsilon_{2} \epsilon_{4}\right) & 2\left(\epsilon_{2} \epsilon_{3}+\epsilon_{1} \epsilon_{4}\right) & 1-2 \epsilon_{1}^{2}-2 \epsilon_{2}^{2}
\end{array}\right]
\end{array} \quad \epsilon_{2}=\frac{r_{13}-r_{31}}{4 \epsilon_{4}}, \quad \epsilon_{3}=\frac{r_{21}-r_{12}}{4 \epsilon_{4}},
$$

Computation Considerations

Practical Reality

- Homogeneous representation requires wasteful time multiplying by zeros and ones
- The availability of inexpensive computing power is largely responsible for the growth of the robotics industry;
- yet, for some time to come, efficient computation will remain an important issue in the design of a manipulation system.
- Order of multiplication
- ${ }^{A}{ }_{P}={ }_{D}^{A} R^{D_{P}}$
- ${ }^{A} P={ }_{B}^{A} R_{C}^{B} R_{D}^{C} R^{D} P$
${ }^{A} P={ }_{B}^{A} R{ }_{C}^{B} R^{C} P$
${ }^{A} P={ }_{B}^{A} R{ }^{B} P$
${ }^{A} P={ }^{A} P$,

63 multiplications and 42 additions
27 multiplications and 18 additions

$$
{ }^{A} P={ }_{B}^{A} R{ }_{C}^{B} R{ }_{D}^{C} R^{D} P
$$

Kinematics

The science of motion that treats the subject without regard to the forces that cause it

- A manipulator may be thought of as a set of bodies connected in a chain by joints
- These bodies are called links.
- Joints form a connection between a neighboring pair of links
- Lower-pair Joints: two surfaces sliding over one another
- Most manipulators have revolute or prismatic joints, both having 1 degree of freedom

- Manipulator Kinematics

- All the geometrical and time-based properties

Revolute

Cylindrical

Screw

Prismatic

Spherical of the motion

- The position, the velocity, the acceleration, and all higher order derivatives of the position variables (w.r.t. time or any other variable(s))

$a_{i}=$ the distance from \hat{Z}_{i} to \hat{Z}_{i+1} measured along $\hat{X}_{i} ;$
D土 DATAneteqS $\alpha_{i}=$ the angle from \hat{Z}_{i} to \hat{Z}_{i+1} measured about \hat{X}_{i};
Frame Attachment
$d_{i}=$ the distance from \hat{X}_{i-1} to \hat{X}_{i} measured along \hat{Z}_{i}; and $\theta_{i}=$ the angle from \hat{X}_{i-1} to \hat{X}_{i} measured about \hat{Z}_{i}.

Uniqueness of Link Parameters

Practical Considerations

- Two choices of joint axis direction, $\widehat{Z_{i}}$
- Two choices of link length axis direction, \widehat{X}, for intersecting joints (i.e. $a_{i}=0$)
- Arbitrary choice of origin when axes are parallel
- Freedom in frame assignment with prismatic joints
- Meaning that there could be multiple ways of writing the DH parameters, depending on the different choice of frame assignment.
- Also multiple ways of interpreting the calculated results, if using different ways of frame assignment
- Careful, or you might get lost

Procedure of Link-Frame Attachment

1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these neighboring lines (at axes i and $i+1$).
2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the i th axis, assign the link-frame origin.
3. Assign the \hat{Z}_{i} axis pointing along the i th joint axis.
4. Assign the \hat{X}_{i} axis pointing along the common perpendicular, or, if the axes intersect, assign \hat{X}_{i} to be normal to the plane containing the two axes.
5. Assign the \hat{Y}_{i} axis to complete a right-hand coordinate system.
6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is zero. For $\{N\}$, choose an origin location and \hat{X}_{N} direction freely, but generally so as to cause as many linkage parameters as possible to become zero.

$$
\begin{aligned}
a_{i} & =\text { the distance from } \hat{Z}_{i} \text { to } \hat{Z}_{i+1} \text { measured along } \hat{X}_{i} ; \\
\alpha_{i} & =\text { the angle from } \hat{Z}_{i} \text { to } \hat{X}_{i+1} \text { measured about } \hat{X}_{i} ; \\
d_{i} & =\text { the distance from } \hat{X}_{i-1} \text { to } \hat{X}_{i} \text { measured along } \hat{Z}_{i} ; \text { and } \\
\theta_{i} & =\text { the angle from } \hat{X}_{i-1} \text { to } \hat{X}_{i} \text { measured about } \hat{Z}_{i} .
\end{aligned}
$$

Exercise

1. Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2 through 5 below, consider two of these neighboring lines (at axes i and $i+1$).
2. Identify the common perpendicular between them, or point of intersection. At the point of intersection, or at the point where the common perpendicular meets the i th axis, assign the link-frame origin.
3. Assign the \hat{Z}_{i} axis pointing along the i th joint axis.
4. Assign the \hat{X}_{i} axis pointing along the common perpendicular, or, if the axes intersect, assign \hat{X}_{i} to be normal to the plane containing the two axes.
5. Assign the \hat{Y}_{i} axis to complete a right-hand coordinate system.
6. Assign $\{0\}$ to match $\{1\}$ when the first joint variable is zero. For $\{N\}$, choose an origin location and \hat{X}_{N} direction freely, but generally so as to cause as many linkage parameters as possible to become zero.

(a)

i	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	θ_{1}
2	90°	0	d_{2}	0
3	0	0	L_{2}	θ_{3}

$$
\mathrm{O}=>\mathrm{Z} \Rightarrow \mathrm{X} \Rightarrow a \Rightarrow \alpha=>d \Rightarrow \theta
$$

Derivation of Link Transformations

Each of the four transformations will be a function of one link parameter only and will be simple enough that we can write down its form by inspection

$$
\begin{gathered}
{ }_{i}^{i-1} T={ }_{R}^{i-1} T{ }_{Q}^{R} T{ }_{P}^{Q} T{ }_{i}^{P} T \\
{ }_{i}^{i-1} T=R_{X}\left(\alpha_{i-1}\right) D_{X}\left(a_{i-1}\right) R_{Z}\left(\theta_{i}\right) D_{Z}\left(d_{i}\right) \\
{ }_{i}^{i-1} T=\operatorname{Screw}_{X}\left(a_{i-1}, \alpha_{i-1}\right) \operatorname{Screw}_{Z}\left(d_{i}, \theta_{i}\right) \\
{ }_{i}^{i} T=\left[\begin{array}{ccc}
c \theta_{i} & -s \theta_{i} & 0 \\
s \theta_{i} \alpha_{i-1} & c \theta_{i} c \alpha_{i-1} & -s \alpha_{i-1} \\
s \theta_{i} s \alpha_{i-1} d_{i} \\
s \theta_{i} s \alpha_{i-1} & c \theta_{i} s \alpha_{i-1} & c \alpha_{i-1} \\
0 & 0 & 0 \\
{ }_{i}^{i-1} d_{i} \\
\hline
\end{array}\right]
\end{gathered}
$$

Concatenating link transformations

- The single transformation that relates frame $\{\mathrm{N}\}$ to frame $\{0\}$

$$
{ }_{N}^{0} T={ }_{1}^{0} T{ }_{2}^{1} T{ }_{3}^{2} T \ldots{ }_{N}^{N-1} T \quad \text { a function of all } n \text { joint variables }
$$

Actuator Space, Joint Space, and Cartesian Space

- Joint Space
- The space of all joint vectors.
- A $n \times 1$ joint vector refers to a set of n joint variables specifying the position of all the links of a manipulator of n degrees of freedom.
- Cartesian Space
- When position is measured along orthogonal axes and orientation is measured according to any Cartesian conventions.

- Actuator Space

- The space of all actuator positions.
- Computations necessary to realized the joint vector as a function of a set of actuator values.

Example: Kinematics of PUMA 560

Attach the Frames => Determine the DH => Check \& Revise

i	$\alpha_{i}-1$	$a_{i}-1$	d_{i}	θi
1	0	0	0	θ_{1}
2	-90°	0	0	θ_{2}
3	0	a_{2}	d_{3}	θ_{3}
4	-90°	a_{3}	d_{4}	θ_{4}
5	90°	0	0	θ_{5}
6	-90°	0	0	θ_{6}
4				

AncoraSIR.com

$$
\begin{aligned}
& { }_{1}^{0} T=\left[\begin{array}{cccc}
c \theta_{1} & -s \theta_{1} & 0 & 0 \\
s \theta_{1} & c \theta_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad{ }_{6}^{4} T={ }_{5}^{4} T{ }_{6}^{5} T=\left[\begin{array}{cccc}
c_{5} c_{6} & -c_{5} s_{6} & -s_{5} & 0 \\
s_{6} & c_{6} & 0 & 0 \\
s_{5} c_{6} & -s_{5} s_{6} & c_{5} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }_{2}^{1} T=\left[\begin{array}{cccc}
c \theta_{2} & -s \theta_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s \theta_{2} & -c \theta_{2} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, } \\
& { }_{3}^{2} T=\left[\begin{array}{cccc}
c \theta_{3} & -s \theta_{3} & 0 & a_{2} \\
s \theta_{3} & c \theta_{3} & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \text {, } \\
& \begin{aligned}
{ }_{4}^{3} T=\left[\begin{array}{cccc}
c \theta_{4} & -s \theta_{4} & 0 & a_{3} \\
0 & 0 & 1 & d_{4} \\
-s \theta_{4} & -c \theta_{4} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad{ }_{6}^{1} T={ }_{3}^{1} T{ }_{6}^{3} T=\left[\begin{array}{ccccc}
{ }^{1} r_{11} & { }_{1} r_{12} & { }_{1} r_{13} & { }_{1}^{1} p_{x} \\
1_{r_{21}} & { }_{r} r_{22} & { }_{1} & r_{23} & { }_{1} p_{y} \\
1_{r_{31}} & 1_{r_{32}} & { }^{1} r_{33} & { }_{1}^{1} p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned} \\
& { }_{5}^{4} T=\left[\begin{array}{cccc}
c \theta_{5} & -s \theta_{5} & 0 & 0 \\
0 & 0 & -1 & 0 \\
s \theta_{5} & c \theta_{5} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& { }_{6}^{5} T=\left[\begin{array}{cccc}
c \theta_{6} & -s \theta_{6} & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s \theta_{6} & -c \theta_{6} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {. } \\
& { }_{6}^{0} T={ }_{1}^{0} T{ }_{6}^{1} T=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & p_{x} \\
r_{21} & r_{22} & r_{23} & p_{y} \\
r_{31} & r_{32} & r_{33} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& r_{11}=c_{1}\left[c_{23}\left(c_{4} c_{5} c_{6}-s_{4} s_{5}\right)-s_{23} s_{5} c_{5}\right]+s_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \text {, } \\
& r_{21}=s_{1}\left[c_{23}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{23} s_{5} c_{6}-c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right)\right. \text {, } \\
& r_{31}=-s_{23}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{23} s_{5} c_{6} \text {, } \\
& r_{12}=c_{1}\left[c_{23}\left(-c_{4} c_{5} s_{6}-s_{4} c_{6}\right)+s_{23} s_{5} s_{6}\right]+s_{1}\left(c_{4} c_{6}-s_{4} c_{5} s_{6}\right) \text {, } \\
& r_{22}=s_{1}\left[c_{23}\left(-c_{4} c_{5} s_{6}-s_{4} c_{6}\right)+s_{23} s_{5} s_{6}\right]-c_{1}\left(c_{4} c_{6}-s_{4} c_{5} s_{6}\right) \text {, } \\
& r_{32}=-s_{23}\left(-c_{4} c_{5} s_{6}-s_{4} c_{6}\right)+c_{23} s_{5} s_{6}, \\
& r_{13}=-c_{1}\left(c_{23} c_{4} s_{5}+s_{23} c_{5}\right)-s_{1} s_{4} s_{5}, \quad p_{x}=c_{1}\left[a_{2} c_{2}+a_{3} c_{23}-d_{4} s_{23}\right]-d_{3} s_{1}, \\
& r_{23}=-s_{1}\left(c_{23} c_{4} s_{5}+s_{23} c_{5}\right)+c_{1} s_{4} s_{5}, \quad p_{y}=s_{1}\left[a_{2} c_{2}+a_{3} c_{23}-d_{4} s_{23}\right]+d_{3} c_{1}, \\
& r_{33}=s_{23} c_{4} s_{5}-c_{23} c_{5} \text {, } \\
& p_{z}=-a_{3} s_{23}-a_{2} s_{2}-d_{4} c_{23} \text {. } \\
& \text { The basic } \\
& \text { equations for all } \\
& \text { kinematic analysis } \\
& \text { of this manipulator } \\
& \text { Attach the frames } \\
& \text { wisely to ease the } \\
& \text { computational } \\
& \text { burden }
\end{aligned}
$$

The Base Frame, $\{\mathrm{B}\}$

Frames with Standard Names

- $\{B\}$ is located at the base of the manipulator.
- It is merely another name for frame $\{0\}$.
- It is affixed to a nonmoving part of the robot, sometimes called link 0 .

The Station Frame, $\{\mathrm{S}\}$

Frames with Standard Names

- $\{\mathrm{S}\}$ is located in a task-relevant location. (Task/Work Frame/Universe Frame)
- In the following figure, it is at the corner of a table upon which the robot is to work.
- As far as the user of this robot system is concerned, $\{\mathrm{S}\}$ is the universe frame, and all actions of the robot are performed relative to it.

The Wrist Frame, $\{\mathrm{W}\}$

Frames with Standard Names

- $\{W\}$ is affixed to the last link of the manipulator.
- It is another name for frame $\{\mathrm{N}\}$, the link frame attached to the last link of the robot.
- Very often, $\{\mathrm{W}\}$ has its origin fixed at a point called the wrist of the manipulator, and $\{\mathrm{W}\}$ moves with the last link of the manipulator. It is defined relative to the base frame.

The Tool Frame, $\{\mathrm{T}\}$

Frames with Standard Names

- $\{T\}$ is affixed to the end of any tool the robot happens to be holding.
- When the hand is empty, $\{\mathrm{T}\}$ is usually located with its origin between the robot fingertips.
- The tool frame is always specified with respect to the wrist frame.
- In the following example, the tool frame is defined with its origin at the tip of a pin that the robot is holding.

The Goal Frame, $\{\mathrm{G}\}$

Frames with Standard Names

- $\{\mathrm{G}\}$ is a description of the location to which the robot is to move the tool.
- Specifically this means that, at the end of the motion, the tool frame should be brought to coincidence with the goal frame.
- $\{\mathrm{G}\}$ is always specified relative to the station frame.

Where is the Tool?

We wish to calculate the value of the tool frame, $\{T\}$, relative to the station frame, $\{\mathrm{S}\}$.

- The position and orientation of the tool it is holding (or of its empty hand) with respect to a convenient coordinate system.

$$
{ }_{T}^{S} T={ }_{S}^{B} T^{-1}{ }_{W}^{B} T_{T}^{W} T .
$$

- WHERE function in some robot systems
- It computes "where" the arm is.
- The position and orientation of the pin relative to the table top

Computation Considerations

In many practical manipulator systems, the time required to perform kinematic calculations is a consideration

- The use of fixed- or floating-point representation of the quantities involved.
- Fixed over floating as the limited dynamic range of the variables
- Roughly estimated a 24 fixed-point representation is enough.
- Avoid computing common terms over and over throughout the computation
- Factoring equations of the transformation matrix to reduce the number of multiplications and additions at the cost of creating local variables (usually a good trade-off)
- The calculation of the transcendental functions (sine and cosine) is a major expense in kinematics calculations
- Table-lookup implementations of the transcendental functions instead of actual calculations
- Redundant computation of the kinematics as nine quantities are calculated to represent orientation
- One way is to calculate only two columns of the rotation matric and then to compute a cross product (requiring only six multiplications and three additions) to compute the third column.
- Choose the two least complicated columns to compute.

Thank you!

Prof. Song Chaoyang

- Dr. Wan Fang (sophie.fwan@hotmail.com)

